高分子材料中的氢氧化铝

高分子材料中的氢氧化铝

每当说起氢氧化铝,第一印象就是用做阻燃材料,但氢氧化铝也常用在高分子材料中。 让我们一起了解一下:

1、金属氧化物

ATH可与诸多金属氧化铝产生协同作用,曾有文献报道ATH能与Ni、Zn、Mn、Zr、Sb、Fe 、Ti的氧化物并用产生协同效应。其中,Fe、Sb的氧化物对提高阻燃效率和分散性作用较为突出。

2、碱土金属氢氧化物

碱土金属氢氧化物主要指Mg(OH)2。ATH的分解温度为200℃,Mg(OH)2的分解温度为 430℃,将两者并用可以弥补ATH因其分解温度较低而导致材料阻燃性能下降的缺陷,并且可以使复合阻燃剂在材料氧化分解过程中一直具有较好的阻燃效果。据报道,低添加量(<30%)的Mg(OH)2对ATH阻燃有促进作用,特别是可以提高材料的碳化效果;当Mg(OH)2与ATH用量相同时,在聚丙烯中有最佳的协同效果。 通过实验发现:ATH/Mg(OH)2二者混合使用,在235~455℃范围内均存在脱水吸热反应,可以在较宽范围内抑制高分子材料的燃烧。

3、与有机硅化物的协同效应

有机硅化合物在阻燃高分子材料中应用不很广泛,但也是ATH等无机阻燃剂的有效增效 剂。如GE公司生产的SFR-100与树脂相容性好,它的加入可以大大减少ATH的添加量,因而能提高体系的力学性能、热稳定性和表面光洁度,甚至在ATH高填充的条件下,流变性能仍然很好。另有报道:一种有机硅复合阻燃增效剂ZD,少量加入EVA/ATH体系,其氧指数提高了13%(达到34),且燃烧时完全无滴落现象,同时能够保持较好的力学性能。

相关新闻

  • 氢氧化铝的高能处理改性

    氢氧化铝的高能处理改性

    利用紫外线、红外线、电晕放电和等离子体照射等方式进行矿物等粉体表面改性的方法称之为高能处理改性。高能处理改性一般作为激发手段用于单体烯烃或聚烯烃在颗粒表面的接枝改性。如玻璃纤维和γ-Al2O3等无极粉体经γ射线照射,可实现苯乙烯等单体在其表面的聚合接枝。 高能处理法主要用于纤维等增强材料,用于矿物粉体的表面改性较少,曾经报导过的有碳酸钙和云母分别以辐照和等离子体处理为激发手段进行乙烯单体表面接枝改性等。

    材料应用 2024年4月21日
  • 纳米氢氧化铝分散研究的必要性

    纳米氢氧化铝分散研究的必要性

    今天小编给大家介绍一下对纳米氢氧化铝分散研究的必要性。有人会问:为什么对粉体分 散的研究是必要的? 下面我给大家举两个例子: 1、在化工领域,如涂料、染料、油墨、化妆品等行业,产品的分散度及分散稳定性直接影响其质量和性能。 2、在陶瓷科学领域,粉体的均匀分散是采用胶态成型方法获得具有较好显微结构和性能的陶瓷制品的基础。相信看完这两个例子大家应该有些许明白。 纳米粉体因其体积效应和表面效应而在磁性、催化性、光吸收、热阻和熔点等方面显示出 特异的性质,但因粒径小,表面能高,具有自发团聚的趋势,大大影…

    材料应用 2024年7月28日
  • 氢氧化铝的阻燃性和UV低吸收性

    氢氧化铝的阻燃性和UV低吸收性

    氢氧化铝对UV的低吸收性使其适用于可UV固化的材料中。氢氧化铝的阻燃性是由于降温、阻隔层形成和稀释。降温能力来源于氢氧化铝在高温时释放出的水,在300°左右释放量达到高峰。释放水的反应本身就是吸热反应,而且,水蒸发消耗额外的能量。氢氧化铝分解后,形成阻隔层,可减慢氧气的流动和其他气体的生成速度。必须大量使用填料(如150phr)才可能使材料具有阻燃性(稀释因素)。虽然氢氧化铝可赋予材料阻燃性,但影响其机械性质和流变性质。因为填料的用量不能显著减少,所以,用一些如含锌化物的添加剂可部分减低AL(O…

    材料应用 2024年2月29日