简析纳米氢氧化铝的特点

简析纳米氢氧化铝的特点

与常规氢氧化铝相比,由于纳米氢氧化铝微粒尺寸小,比表面大,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等。这些特性使得纳米氢氧化铝的物理、化学性质也相应发生了巨大的变化。

1、与普通粒径的氢氧化铝相比,纳米氢氧化铝的比表面积大幅提高,使粒子表面水蒸气分压下降,在一定程度上可以提高阻燃效果。如氢氧化铝平均粒径为5μm时,氧指数为28,当粒径小于1μm时,有限氧指数可达33。

2、纳米氢氧化铝的热分解温度比普通氢氧化铝的热分解温度升高100℃以上,具有更好的耐热性能。可用于加工温度较高的聚合物如工程塑料 PA-66(加工温度275℃)的阻燃,阻燃效果较好。

3、纳米氢氧化铝进行填充时,在较高用量的情况下,不仅不会降低材料力学性能,且能起到刚性粒子的增塑增强作用;也能增强无机阻燃剂与聚合物之间的接触面积、增加两者相互作用的能力、改善两者相容性。

纳米氢氧化铝作为阻燃剂和填充剂可以广泛用于橡胶、塑料;在阻燃涂料以及家庭、汽车内的装饰材料上作为主要的阻燃添加剂;与聚合物材料形成有机/无机纳米复合材料,使得它在信息、通信、微电子、生物化工、环境、医药等领域也有较好的应用。随着新兴材料科学的发展和各国环保、阻燃法规的逐渐完善和日趋严格,纳米氢氧化铝需求量将会越来越大,具有广阔的市场前景。

相关新闻

  • 氢氧化铝的阻燃性和UV低吸收性

    氢氧化铝的阻燃性和UV低吸收性

    氢氧化铝对UV的低吸收性使其适用于可UV固化的材料中。氢氧化铝的阻燃性是由于降温、阻隔层形成和稀释。降温能力来源于氢氧化铝在高温时释放出的水,在300°左右释放量达到高峰。释放水的反应本身就是吸热反应,而且,水蒸发消耗额外的能量。氢氧化铝分解后,形成阻隔层,可减慢氧气的流动和其他气体的生成速度。必须大量使用填料(如150phr)才可能使材料具有阻燃性(稀释因素)。虽然氢氧化铝可赋予材料阻燃性,但影响其机械性质和流变性质。因为填料的用量不能显著减少,所以,用一些如含锌化物的添加剂可部分减低AL(O…

    材料应用 2024年2月29日
  • 氢氧化铝的表面化学改性

    氢氧化铝的表面化学改性

    表面化学改性方法是利用有机物分子中的官能团在无机颗粒(填料或颜料)表面的吸附或化学反应对颗粒表面进行局部包覆,使颗粒表面有机化而达到表面改性的方法。这是目前无机填料或颜料所采用的最主要的表面改性方法。除利用表面官能团改性外,这种方法还包括利用游离基反应、螯合反应、溶胶吸附以及偶联剂处理等进行表面改性处理。 表面化学改性所用的改性剂种类繁多,如硅烷偶联剂、钛酸脂偶联剂、有机鉻偶联剂、高级脂肪酸及其盐、磷酸酯、不饱和有机酸、有机铵盐及其它类型表面活性剂等。 表面化学改性对矿物表面进行的改性及应用主要…

    材料应用 2024年4月24日
  • 氢氧化铝阻燃剂的优缺点简析

    氢氧化铝阻燃剂的优缺点简析

    氢氧化铝阻燃剂,简称ATH,作为常用的电缆阻燃剂,氢氧化铝阻燃剂具有价格低、阻燃性好等优点。 同时,氢氧化铝阻燃剂也存在着一些缺点,值得大家注意: 耐热性差。200℃即开始脱水,330℃到350℃即完全脱水,而树脂的固化多在氢氧化铝脱水温度区间内,因而导致合成树脂成品内发泡。 表面不平整、介电性能下降,成品率低。应用于高温导致硅胶起雾,产品发白起泡,介电性下降等。 EC≈60~100μS/cm,易吸潮。

    材料应用 2024年2月14日