高分子材料中的氢氧化铝

高分子材料中的氢氧化铝

每当说起氢氧化铝,第一印象就是用做阻燃材料,但氢氧化铝也常用在高分子材料中。 让我们一起了解一下:

1、金属氧化物

ATH可与诸多金属氧化铝产生协同作用,曾有文献报道ATH能与Ni、Zn、Mn、Zr、Sb、Fe 、Ti的氧化物并用产生协同效应。其中,Fe、Sb的氧化物对提高阻燃效率和分散性作用较为突出。

2、碱土金属氢氧化物

碱土金属氢氧化物主要指Mg(OH)2。ATH的分解温度为200℃,Mg(OH)2的分解温度为 430℃,将两者并用可以弥补ATH因其分解温度较低而导致材料阻燃性能下降的缺陷,并且可以使复合阻燃剂在材料氧化分解过程中一直具有较好的阻燃效果。据报道,低添加量(<30%)的Mg(OH)2对ATH阻燃有促进作用,特别是可以提高材料的碳化效果;当Mg(OH)2与ATH用量相同时,在聚丙烯中有最佳的协同效果。 通过实验发现:ATH/Mg(OH)2二者混合使用,在235~455℃范围内均存在脱水吸热反应,可以在较宽范围内抑制高分子材料的燃烧。

3、与有机硅化物的协同效应

有机硅化合物在阻燃高分子材料中应用不很广泛,但也是ATH等无机阻燃剂的有效增效 剂。如GE公司生产的SFR-100与树脂相容性好,它的加入可以大大减少ATH的添加量,因而能提高体系的力学性能、热稳定性和表面光洁度,甚至在ATH高填充的条件下,流变性能仍然很好。另有报道:一种有机硅复合阻燃增效剂ZD,少量加入EVA/ATH体系,其氧指数提高了13%(达到34),且燃烧时完全无滴落现象,同时能够保持较好的力学性能。

相关新闻

  • 氢氧化铝的阻燃性和UV低吸收性

    氢氧化铝的阻燃性和UV低吸收性

    氢氧化铝对UV的低吸收性使其适用于可UV固化的材料中。氢氧化铝的阻燃性是由于降温、阻隔层形成和稀释。降温能力来源于氢氧化铝在高温时释放出的水,在300°左右释放量达到高峰。释放水的反应本身就是吸热反应,而且,水蒸发消耗额外的能量。氢氧化铝分解后,形成阻隔层,可减慢氧气的流动和其他气体的生成速度。必须大量使用填料(如150phr)才可能使材料具有阻燃性(稀释因素)。虽然氢氧化铝可赋予材料阻燃性,但影响其机械性质和流变性质。因为填料的用量不能显著减少,所以,用一些如含锌化物的添加剂可部分减低AL(O…

    材料应用 2024年2月29日
  • 氢氧化铝阻燃剂改性技术和发展方向

    氢氧化铝阻燃剂改性技术和发展方向

    氢氧化铝作为一种环保型的无机阻燃剂,其应用领域和应用范围不断扩大 。虽然氢氧化铝阻燃剂具有优异的阻燃、消烟、填充以及与其他物质产生阻燃协同效应等功能,在聚合物阻燃领域中应用越来越广泛,但是其表面亲水疏油,与非极性材料亲和性差,在聚合物基体中难以均匀分散,从而限制了它的应用。因此,如何提高氢氧化铝阻燃聚合物的力学性能,是需要解决的主要课题之一。目前的方法主要有超细化、表面改性、协同增效 以及高纯化等。 随着应用范围不断扩大,氢氧化铝阻燃剂的发展方向也是人们研究的对象 。小编经过收集整理后,得出今后…

    材料应用 2024年10月13日
  • 氢氧化铝的机械化学改性

    氢氧化铝的机械化学改性

    机械化学改性是在矿物超细粉碎同时实施化学改性,利用粉碎机械力效应,可促进和强化改性效果。粉碎过程中施加的大量机械能,除消耗于颗粒细化外,还有一部分用于改变颗粒的晶格于表面性质,从而呈现激活现象。激活的颗粒极易于周围的固体、液体和气体物质发生反应,这就是机械化学效应 。 机械力化学改性其实质是表面化学等改性方法的促进手段,实际应用上,除表面化学改性外,固体颗粒间的粒-粒包覆与矿物粒表面接聚合物的改性也常借助于粉碎机械力的促进效应。 粒间的粒-粒包覆与矿物粒表面接聚合物的改性也常借助于粉碎机械力的促…

    材料应用 2024年4月29日